Bundles over Quantum RealWeighted Projective Spaces

نویسندگان

  • Tomasz Brzezinski
  • Simon A. Fairfax
چکیده

The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (co)actions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Çò Øøø Õùùòøùñ Óóóñóðóóý Óó Òó Ùòòðð× Óúö Ôöó Blockinøøú ×ôô Blockin Blockin× Òò Øøø Óòòò Blockinøùöö Óó Øýööú

In their paper “Quantum cohomology of projective bundles over IP” (Trans. Am. Math. Soc. (1998) 350:9 3615-3638) Z. Qin and Y. Ruan introduce interesting techniques for the computation of the quantum ring of Fano manifolds which are projectivized bundles over projective spaces; in particular, in the case of splitting bundles they prove under some restrictions the conjecture of Batyrev about the...

متن کامل

The Grothendieck Group of a Quantum Projective Space Bundle

We compute the Grothendieck group K0 of non-commutative analogues of projective space bundles. Our results specialize to give the K0-groups of non-commutative analogues of projective spaces, and specialize to recover the K0-group of a usual projective space bundle over a regular noetherian separated scheme. As an application, we develop an intersection theory for quantum ruled surfaces.

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Çò Øøø Õùùòøùñ Óóóñóðóóý Óó Òó Ùòòðð× Óúö Ôöó Blockinøøú ×ôô Blockin Blockin×

In their paper “Quantum cohomology of projective bundles over IP” (Trans. Am. Math. Soc. (1998) 350:9 3615-3638) Z. Qin and Y. Ruan introduce interesting techniques for the computation of the quantum ring of manifolds which are projectivized bundles over projective spaces; in particular, in the case of splitting bundles they prove under some restrictions the formula of Batyrev about the quantum...

متن کامل

0 D ec 2 01 5 NONCOMMUTATIVE LINE BUNDLES ASSOCIATED TO TWISTED MULTIPULLBACK QUANTUM ODD SPHERES

We construct a noncommutative deformation of odd-dimensional spheres that preserves the natural partition of the (2N + 1)-dimensional sphere into (N + 1)many solid tori. This generalizes the case N = 1 referred to as the Heegaard quantum sphere. Our twisted odd-dimensional quantum sphere C∗-algebras are given as multipullback C∗-algebras. We prove that they are isomorphic to the universal C∗-al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012